If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+208t=0
a = -16; b = 208; c = 0;
Δ = b2-4ac
Δ = 2082-4·(-16)·0
Δ = 43264
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{43264}=208$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(208)-208}{2*-16}=\frac{-416}{-32} =+13 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(208)+208}{2*-16}=\frac{0}{-32} =0 $
| 6x/2-7=14 | | -265/69=-20/23b | | 8+3c=17 | | (7x-10)+(x+3)=9x-11 | | 0.20x+90=0.50x+60 | | (2y-1)+(12y+11)=180 | | 4n−9=3 | | -2(n+5)=1/2(-4n-20) | | 4x/x^2-16=16/x^2-16-4/x+4 | | 12960/323=120/17n | | -12=2(g+13) | | 2(2x+3)=5x+1 | | -3(x+4)+8=-2(x-4) | | 5x+3(x-4)=9x+2 | | 4(5x+7)=-37+5 | | -14=n/3-9 | | (3x-2)+(x-26)=180 | | -3/4(8n+12=3(n-3) | | 123/165=113/15+x | | 8=4v−12 | | 3(2x+3)+4+2=21 | | -23=3w-2 | | 2(p+6)–10=12 | | 7f=-93f-1 | | 2(p-15)=8 | | x/9=6.6 | | 11=4d+7 | | (4y-9)+(4y+5)=180 | | 3/4(8c-16)=2c+12 | | 3(x-2)/4=3(x+6)/12 | | 7.2=n+5.5 | | 5a+6=22 |